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A code is described which transfers an arbitrary initial plasma and field configuration 
under the constraints of mass and flux conservation into an equilibrium state by minimizing 
the energy of the system so that, in principle, the equilibrium attained is stable. As minimizing 
algorithms we used the gradient and conjugate gradient methods which are modified such that 
their convergence rate was greatly improved. A third method (MHF) introduces an artificial 
time and derives additional information on the lowest eigenvalue of the asymptotic linear 
problem from time history. Time integration of this method is explicit with time steps of 
varying length which admits a mean step two orders of magnitude larger than the usual 
stability limit. The computation grid is Eulerian corresponding to space-fixed cylindrical coor- 
dinates whose boundary is a torus surface with rectangular cross section. By this choice 
numerical flux conservation is not automatically guaranteed but it is possible to handle 
complicated field topologies. The code is checked against known analytical results and the 
dependence on the mesh size is studied. It is applied to calculate non-axisymmetric, toroidal 
equilibria with one or more magnetic axes and to determine the instabilities of helical l= 2 
and 3 configurations. 

1. INTRODUCTION 

One of the basic problems of plasma physics is the calculation of general three- 
dimensional magnetohydrostatic equilibria and the assessment of their stability. 
Knowing these is essential for designing confinement devices without ignorable coor- 
dinates such as stellarators or tokamaks disturbed by ripple, additional helical 
windings or instability. 

The solution of this problem is approached along two lines, i.e., 

(a) analytically, by solving the equations for equilibrium directly, using small 
parameters [ 1,2,3], 

(b) numerically, by satisfying the equilibrium conditions on a grid iteratively. 

It is this latter approach which will be described here. Starting from an arbitrary 
distribution of plasma pressure and magnetic field, this distribution is adjusted under 
magnetic flux, mass and entropy conservation in such a way that the plasma energy 
W= j d3x(B2/2 + p/(y - 1)) is decreased monotonically. A state of minimum energy 
is thus approached which represents a MHD equilibrium. To be sure that this 
equilibrium is a state of minimum energy with respect to all degrees of freedom, the 
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system is displaced stochastically from this equilibrium. It now relaxes toward the old 
or a new equilibrium which is now definitively stable. 

Previous numerical work on the minimization problem [4] uses the set of nested 
magnetic flux surfaces as Lagrangian coordinate surfaces. It is thus restricted to the 
case of only one magnetic axis. We use a much simpler space-fixed Eulerian coor- 
dinate system which admits more than one magnetic axis to be present at the expense 
of the magnetic flux not being automatically attached to mass motion. 

A different, but related, method [ 5 ] follows the full plasma dynamics by solving 
the complete MHD equaions in time in a mixed Eulerian-Lagrangian grid and 
approaches equilibrium by inserting a friction term into the equation of motion. 

In the next section we describe the properties of the potential energy in the 
neighbourhood of an equilibrium. From this knowledge we derive in Section 3 
different strategies of proceeding from an arbitrary initial state to the state of 
minimum energy. Section 4 describes the method of investigating stability properties 
of a given equilibrium. In Section 5 we give some details of the numerical procedure. 
Section 6 shows results of tests on the reliability of the code and of calculations of 
different stellarator equilibria and their stability. 

2. PROPERTIES OF THE EQUILIBRIUM 

A MHD equilibrium is characterized as a stationary state of the potential energy 
W. 

w= I d3x(B2/2 + p/(7 - l)), (1) 

dW=O, (2) 

in respect of infinitesimal displacements g(x) which satisfy the constraints of mass 
and magnetic flux conservation, i.e., 

SP = --v * @5>, (3) 

6B = V x (5 x B). (4) 

We assume the change of state of the plasma to be isentropic. Since neither the 
equilibrium itself nor the fact that it is stable or not depend on p and p separately, we 
may assume 

throughout. 

p =p’ (5) 

The plasma is contained in a straight or toroidal domain of fixed rectangular cross 
section. The plasma extends to the wall without a vacuum region in between. In the 
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limit of very low densities the field becomes force-free rather than a vacuum field. 
The boundary condition at the wall is assumed to be 

5 = 0. (6) 

The magnetic field may pass through the wall, i.e., the wall is not a flux surface, but 
according to Eqs. (4) and (6) 

6B . n = 0, (7) 

the normal component of the field does not change, i.e., the magnetic flux is frozen in 
the infinitely conducting wall. 

With the aid of the constraints (3) and (4) the energy variation 6W can be 
rewritten as 

6W= - d3xF. i$ I (8) 

where F represents the local force of the plasma 

F = (V x B) x B - Op. (9) 

The Euler equation of the variation (2) is thus the equilibrium condition of 
magnetohydrostatics 

F = 0. (10) 

In the neighbourhood of the equilibrium F is linear in 5. Expanding 5 in terms of 
eigenfunctions ci of the linearized operator F(c) with eigenvalues Ai, i.e., 

with 

leads to 

f  F(&) = -AJi 

6W= C CZfli. 
i 

In the space of eigenfunctions the cut W = const for Ai > 0 is thus an ellipsoid with 
half-axes proportional to A;“* (Fig. 1). Since the eigenvalues which are represented in 
the numerical grid differ by many orders of magnitude the ellipsoid contains long and 
flat as well as short and steep portions and both have to be resolved on the path of 
convergence to the minimum of W. 
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1 Frictmn method 
2 Gradient method 
3 Conjugate gradient method 

FIG. 1. Schematic picture of paths of convergence toward W,,,i, using different iteration methods. 
For simplicity the system is assumed to have only two eigenstates. 

3. ROUTES TO THE ENERGY MINIMUM 

We start from an arbitrary distribution of density p and magnetic lield B with 
0 . B = 0 as initial state. The path of displacement to the energy minimum is 

described by c(t) where t is a time-like parameter. Introducing a “velocity” v by 

Eq. (8) now becomes 

@=vdt (14) 

dW/dt = - 
I 

d3x F . v. (15) 

(a) Friction Model 

A possible way of approaching the minimum of potential energy is given by [6, 71 

v(x, t) = aF(x, t), (16) 

where a is a positive number, function or operator (Fig. 1, Curve 1). According to 
Eq. (15) differential displacements (14) lead to a steady diminuation of W. 

The set of equations (3), (4) and (9) together with the assumption (16) is a 
parabolic system. It describes the motion of a plasma under the action of a friction 
force without inertia. We call such a model MHF, where F shall indicate that 
magneto-hydro dynamics is replaced by --fiction. The friction force steadily extracts 
energy and the plasma creeps into an equilibrium state. 

(b) Gradient Method 

This method is different from the preceding one in that it proceeds, in principle, in 
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discrete steps (Fig. 1, Curve 2). At the beginning of step n at time I, the direction of 
displacement v, is calculated from Eq. (16), 

v,=aF,, (17) 

which guarantees decreasing energy at the start. This direction is maintained during 
the whole step, i.e., the displacement 5 is given by 

5 = 5, + v& - f,>. (18) 

If the system is already near to an equilibrium the displacement (18) leads to a 
quadratical decrease of W with time. The time when W reaches its minimum, t,, 1, 
can be determined by calculating the time derivatives I@= - J” d3x F . v at t, and at a 
test time I,, Ik,, and tiS, respectively: 

t ?I+1 = t, + aqt, - tn)/(Wn - WJ a= 1. (19) 

In practice, it is necessary to stop slightly before the minimum, e.g., at a = 0.8 . . . 0.9 
of the ideal step time. Otherwise the iteration would fall into cycles of two orthogonal 
displacements within the same “plane,” leading to very poor convergence (Fig. 2). At 
the end of the step the new direction v, + i is calculated from Eq. (16) (which is nearly 
perpendicular to the preceding one), and the next step along this new direction is 
executed. 

In the course of iteration there will occur steps where the system by chance moves 
nearly along an eigenmode of aF with eigenvalue L. The time length of such a step is 
l/L Thus from the minimum occuring step length the largest eigenvalue LMax and the 
admissible time step dt, of Eq. (27) can be derived. 

(c) Conjugate Gradient Method 

This method improves the gradient method by determining the minimum of W not 
only along a fixed “line” with direction v, but within a ‘plane” built by the direction 
of displacement during the preceding step v, _, and the force at the beginning of the 
new step F, (Fig. 1, Curve 3): 

v, = F, + b(F;)/(F:- 1) v,- , . (20) 

Here F,-, is the force at the beginning of the preceding step and ( ) means an 
average over the whole volume. By proceeding from time step to time step an 
increasing number of dimensions in Hilbert space is thereby included in the 
minimization procedure so that after a number of steps equal to the number of eigen- 
values of F the absolute minimum of W would be reached if numerical errors were 
absent and if the “nonlinear” effect were negligible. The convergence rate of this 
method is very sensitive to the numerical factor b in Eq. (20) which should be slightly 
smaller than 1 (i.e., b = 0.999 ... 0.998) for optimal convergence. 

Figure 2 compares the convergence towards equilibrium for the three methods as 
given by the residual force (F*). The friction method is considerably improved by a 
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FIG. 2. Convergence rate for different iteration methods: 1. Friction method with equal time steps, 
2. friction method with periodic sequence of N unequal time steps according to Eq. (34), 3. gradient 
method with different fractions a of the step length to the minimum (a = 1 and 0.8). 4. conjugate 
gradient method with different weight coefficients b = 1 and 0.999. 

method of varying time steps as described in Section 5b. It then gives, together with 
the conjugate gradient method, the best results. 

4. STABILITY 

The state of lowest energy, which is approached by minimizing the potential energy 
W, is, in principle, a stable equilibrium. Nevertheless it may be that the final state of 
an iteration may not be the state of lowest energy if unstable modes of this final state 
had not been excited in the course of iteration. If, for instance, the initial state was 
axisymmetric it will stay so during the minimization process and the final state will 
be axisymmetric, too. This equilibrium may be unstable in respect of non- 
axisymmetric modes. 

Therefore, in order to be sure that a final state is really a state of lowest energy, 
one has to excite all degrees of freedom of the system, i.e., all eigenmodes. This is 
achieved by disturbing the final state either in an ordered fashion by a Fourier mode 
or more or less stochastically (Fig. 9). If the state was stable, the energy W, after 
rising with the disturbance, will return to its previous value; if it was unsable the 
energy will decrease to a lower level (Fig. 3). 

Furthermore, using the MHF method of Section 3a one can obtain the lowest 
eigenvalue of this equilibrium from the time behaviour of the approximation toward 
the equilibrium. Assuming in Eq. (16) 

a = alp)- l, p = const (21) 



CHODURAAND SCHLtiTER 

Disturbance 

FIG. 3. Schematic behaviour of energy W and mean square force (F’) during the approach to an 
equilibrium. The intermediate equilibrium is disturbed in order to check its stability. 

the square of the eigenfrequency of a MHD mode corresponds to the eigenfrequency 
of the corresponding MHF mode with the same eigenvalue 

and a displacement 5 can be represented as 

5 MHD = 1 c,%,(x) eifit, 
k k 

(22) 

i.e., while MHD modes are either oscillating or exponentially growing, MHF modes 
are either exponentially damped or growing. In the course of time the mode with the 
lowest eigenvalue will dominate the MHF spectrum. Thus, from the asymptotic time 
behaviour of, for instance, (F*) in the vicinity of the equilibrium, the lowest eigen- 
value can be derived. Equation (22) then gives the eigenfrequency of the 
corresponding lowest MHD eigenmode. For any choice of Q > 0 at least the marginal 
points of stability are the same for MHF and MHD. 

5. NUMERICAL PROCEDURE 

(a) Spatial Discretization 

The process of energy minimization is performed in a space-fixed Eulerian grid. 
Cylindrical coordinates around the torus axis are used which may degenerate to 
Cartesian coordinates for a straight configuration. 

In order to conserve mass and flux over an elementary cell we define different 
variables on diffeent points of the cell (Fig. 4), i.e., the mass of the cell M at the 
centre of the volume, the magnetic fluxes w,, ly,,, w,, and mass fluxes at the 
midpoints of the corresponding surfaces and electric field components E = -v X B at 
midpoints of corresponding edges. By this choice for the locaion of variables the 
changes of mass and magnetic fluxes in the cell and through its walls can easily be 
calculated by using Gauss’ and Stoke’s theorems, respectively. The total mass of all 
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FIG. 4. Elementary cell of calculation grid with location of the variables. 

cells is conserved and the sum of the magnetic fluxes through all surfaces of a cell 
stays at zero. 

The most important point is the discreization of the force F. Force and velocity are 
defined at vertices of the cell. We start from an approximation to the energy of the 
system, assuming the magnetic field B to vary linearly between mesh points: 

w = \‘ (; [B:(i + ;, j, k) + B;(i - $, j, k) + B,(i t ;, j, k) B,(i - 1, j, k) 
ijk 

+ (x .+ Y) t (x --) z>] t p'(i, .A k)/(y - 111 A W, .A k). (24) 

Deriving W with respect to t and inserting the discretized form of conservation 
equations (3) and (4), we get an expression for I&’ which is linear in v. Collecting all 
terms with v,(J), v,,(J), v,(J), where J stands for (i t i,j + f, k + $), we can with 
Eq. (15) identify their coefficients with the force components -F,(J), --F,(J), -F,(J). 
This choice of F implies satisfaction of Eq. (15) in the space-descretized form. 

(b) Discretization in Time 

For calculating the change of p and B in time from Eqs. (3) and (4) for fixed v, we 
use an explicit second-order integration scheme. While the gradient and conjugate 
gradient methods use time steps which are automatically stable, the MHF method has 
to consider a maximum admissible time step At, for numerical stability. This time 
step is determined by the largest eigenvalue A,,, of the operator crF: 

Since for the mode with eigenvalue A 

(5” - c”-‘)/At = (rF(g”-‘) = -/It”-‘, (25) 

the amplification factor V of 5 at subsequent time steps n and n - 1, 5, = Vi&- 1, is 
given by 

V= 1 -LAt (26) 

(as compared with the correct value e- “I for the differential form of Eq. (25)) and 
since one requires 1 VI < 1 for numerical stability, we get the usual condition for At,,: 

1 -&lax At, = -1, At, = 2/LMax. (27) 
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FIG. 5. Eigenvalue A, for mode numbers m %- 1. 

In order to use Eq. (27), one has to estimate the largest eigenvalue of the MHF 
system on a grid. For large eigenvalues, i.e., for short wavelengths perpendicular to 
the field (as compared with all gradients) the approximate eigenvalue equation is 

aF(Q x apv; ~T’g/ax’ = -I& 

where vA is the magnetosonic speed, pvfi = yp + B2. The eigenvalues A on a grid with 
mesh size Ax are 

2 = apl, = 2ap(v,/Ax)z[ 1 - cos(7Tm Ax/L)] (29) 

(Fig. 5), where L is the length of the computation interval and 

1 <m<M=L/Ax. 

FIG. 6. Amplification factor VN for a mode with eigenvalue 1: 1. after N = 5 equal time steps 

At, = V&v,,,, t = NAt,, 2. after N = 5 unequal optimized and relaxed time steps, t = Cf- I At, = 18.9At, 
for E = 0.02, 3. after a time t for the ideal case At+ 0. Modes with small (“physical”) eigenvalues are 
treated correctly, modes with large (“numerical”) eigenvalues are at least damped, 1 V,,,l < 1. 



CODE FOR MHD EQUILIBRIUM AND STABILITY 71 

The largest eigenvalue in the grid is thus 

A MBX = 4o(PJ + ~2),,,/(~42. (30) 

(An automatic procedure to determine AMax and At, is given in Section 3b). At,, 
formally depends on the magnitude of a but the relevant quantity At = v At, = aF At, 
does not. For a independent of p, At, depends on p only via p, for a cc pP ’ it depends 
on the lower bound of p as in MHD. 

It is possible to go far beyond the admissible time step At,, by using periodic 
sequences of time steps with different lengths [g-lo]. With N being the number of 
time steps of the sequence the amplification factor after the N steps for a mode with 
eigenvalue 2 is 

V,,,= (1 -1 At,). (31) 

Again, for numerical stability / V,,] < 1 is required. One can consider V,b, as a 
polynomial of order N in 1 with zeros 1, = l/At, and derivative dV,ldL = --C.y= i At,. 
at L = 0. The polynomial of order N which decreases fastest for x = 0 and is bounded 
between -1 and + 1 for arguments 0 < x < 2 is the Chebyshev polynomial 
T,(x- l)=n:=i (x-xx,). Th e zeros of the polynomial are given by 

x,. = 1 + cos[(2v - 1)7c/(2N)], v = 1, 2,.. ., N. (32) 

From x cc J. and xMMax = 2 it follows that 

and 

x = 21/A,,, = i At, 

At, = l/1, = At,/x,. (33) 

Equation (33) was derived on the assumption of linearity and hermiticity of aF. As 
these conditions are not strictly fulfilled and due to round-off errors it is advisable to 
relax I’,,, to a modified Chebyshev polynomial pN = nr=i (x-x;) with amplitude 
smaller than 1 and nodes XL =x, + E, E > 0 (Fig. 6). This leads to time steps 

At, = At&x, + E), (34) 

where E and N can be decreased and increased respectively in approximating the 
equilibrium. For reasons of numerical stability, the At, should not be used in their 
natural monotonic order, but long time steps should be mixed with short ones. We 
got good results by choosing N as a prime number and putting v = kj, with 
j= 1,2 ,..., N and k z N/3. The gain of using time steps from Eqs. (33) and (34) as 
compared with equal time steps according to Eq. (27) is (for large N) 

(At)/Ato z N, where (4 = ( g, A+ (35) 
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and E was chosen as E = O(W*) (Fig. 2). For large values of N it is necessary to 
reduce error propagation and round-off errors by calculating with double precision. 
Cycles of length N up to 307 have been successfully applied. 

One can use still larger time steps if the spectrum 1, of Eq. (29) is changed so that 
the highest eigenvalue A,,, is lowered while small (physical) eigenvalues stay 
unchanged. This is achieved by, for instance, a smoothing procedure for v which 
replaces v at a grid point by a weighted mean over its neighbours in the poloidal 
plane with relative weights 

1 2 1 
2 4+E 2 (36) 
1 2 1 

This smoothing results in a dispersion relation 

1, = 2(u,/dx)‘( sin2(7rm/M) + E[ 1 - cos(7cm/M)] }/(2 + E) (37) 

(Fig. 5), which cuts down AMax to about 4 the value of Eq. (30) and thus increases At, 
by a factor of 2. 

The admissible time step At, is determined by u:, i.e., the eigenvalue for a wave 
vector perpendicular to the magnetic field. The eigenvalue along the field, on the 
other hand, is by a factor c:/u: -p (where c, is the sound velocity) smaller than the 
eigenvalue perpendicular to the field. It is therefore advantageous to use an 
anisotropic friction coeffkient with 

Pa,, -a- (38) 

in order to put both eigenvalues on the same scale and accelerate the parallel motion. 

Many helical, toroidal, i.e., stellarator, configurations possess a symmetry of 
double reflection on the equatorial and poloidal plane. This symmetry is included in 
the program as an option in order to save storage and computing time, 

o&.7- I .A 
0 001 002 003 004 IPX? 

FIG. 8. R.m.s. change of rotational transform r-r, by flux loss during the shift of the magnetic axis 
in different grids. The configuration is the same as Fig. 11. 
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FIG. 9. Excitation of the lowest eigenvalue mode by an ordered and by a stochastic disturbance of 
an equilibrium. 
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6. TESTS 

The most important point for testing the code was to check the dependence of the 
results, i.e., equilibria and lowest eigenvalues, on the grid size. 

To do so, we introduced a known analytic equilibrium, i.e., an axisymmetric 
toroidal Solovev equilibrium [ 1 I] as an initial condition for the iteration procedure. 
Owing to the discretization errors it is not an exact equilibrium on the grid, and so 
the code displaces the system to some extent. Figure 7 shows the analytic equilibrium 
together with that of the code (for a 10 x 10 point grid) and the r.m.s. displacement 
from analytic equilibrium by the code for different mesh sizes. The displacement 
decreases quadratically with the mesh size. 

A similar test was performed for a three-dimensional force-free field 
(V x B) x B = 0 [ 121. Again, for this field and p = const as initial conditions the 
code holds this equilibrium situation fixed. 

Figure 8 shows the result of a test on flux conservation. A straight helical I = 2 
vacuum field is bent into a torus and tilled with plasma. The plasma pressure shifts 
the magnetic axis outward towards an equilibrium position. In the initial state the 
rotational transform I is nearly constant for all flux surfaces. If the code were ideally 
flux conserving I should be conserved. 

As may be seen, there is an appreciable deviation from flux conservation for rough 
grids, becoming small for a 20 x 20 x 20 grid (,4x = 0.1). 

As was pointed out in Section 4 the stability properties of an equilibrium may be 
tested by launching a disturbance. The disturbance may be a Fourier mode which is 
similar to a suspected lowest eigenvalue mode (i.e., same poloidal and axial 
periodicity) or it may be completely stochastic. In any case, after some time the mode 
with the lowest eigenvalue should evolve out of the sea of slower growing or faster 
damping modes. This is shown in Fig. 9 for a straight I= 2 stellarator configuration. 

mzl 

q=l 

FIG. 10. Growth rates y of an m = 1 mode in a straight cylinder of radius a with constant current 
density for different axial wave numbers k and different mesh sizesdx. 
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FIG. 11. Equilibrium of a toroidal I = 2 stellarator with N, = 5 periods, total rotational transform 
I= 0.14, p = 2p,,,/E:,, = 0.002, and aspect ratio of the computation frame A = 20. The grid size is 
20 x 20 x 20 points per period. The figures show three cuts through the flux surfaces over a half period. 
First line: initial state; second line: final equilibrium. 
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Another test studies the unstable eigenvalues of a straight cylinder with constant 
axial current density j, = const and constant axial magnetic field B, = const, which 
implies constant pitch B,/(rB,) = const. Growth rates from the code of an m = I 
instability for different axial wave numbers k are plotted in Fig. 10 for different grid 
sizes together with the theoretical curve for B, @ B, [ 131. As may be noticed, the 
mode grows more slowly in the coarse grid and the maximum growth rate is shifted 
towards smaller wavelengths. Nevertheless, by refining the grid, the true eigenvalue is 
approximated rather closely. 

7. RESULTS 

In Fig. 11 we have plotted the flux lines for three cuts of a toroidal I = 2 
stellarator. The flux lines are found by integrating the magnetic field lines from values 
of magnetic field at grid points with the standard Gourdon code [ 141 and marking 
the intersection points with the given plane. The figures in the first line give the initial 
situation, which is an I = 2 straight vacuum field bent into a torus. Filling in an 
axisymmetric plasma with /3,,, = 2p,,JB& results in a deformation and a shift of 
the flux lines and a helical distortion of the magnetic axis until the equilibrium as 
given in the second line is reached. The shift of the magnetic axis 6 (averaged over a 
helical period) depends on p, the aspect ratio A and the rotational transform .L 
According to a theoretical calculation by Solovev and Shafranov [15] this depen- 
dence can be expressed by one parameter /3maJj3Crit, where pCri, = p/A. We have 
compared in Fig. 12 the shifts of our numerically calculated equlibria for A = 5 and 
24, r=0.14 .a0 0.55 and p,,, up to 0.18 with this theoretical prediction. The 
calculated points lie very close to the theoretical curve. 

As was pointed out, the main advantage of a Eulerian grid is the possibility of 
including more than one magnetic axis in the calculation area. The equilibrium state 
of a configuration with an x-point and two magnetic axes, i.e., the so-called 

FIG. 12. Shift of the magnetic axis 6 of a toroidal I= 2 stellarator equilibrium out of the geometric 
center for different values of p, I and A from the code together with a theoretical result (full line). 6 and 
A are related to the mean radius a of the outermost flux surface enclosed by the computation frame. 
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FIG. 13. An equilibrium with two magnetic axes and a separatrix, A = 16 for the frame, NP = 16, 
p = 0.03 (first line: initial state; second line: final state). 
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FIG. 14. Unstable eigenmodes m = 1, k= 0 of straight helical equilibria with p= 0.5. (a)/= 2, 
ha = 0.4, I= 0.1 per period 2x/h of the equilibrium (a is the mean radius of pressure contour with 
p = p,,Je), (b) I= 3, ha = 0.3, I= 0 . . . 0.07 per period. First line: equilibrium; second line: mode 
structure in two planes at time I = 700 and 1700, respectively; third line: time history of the residual 
force (I+). 
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TABLE I 

Growth Rates y  of Straight Helical I = 2 
and 3 Contigurations with /II = 0.5 for 

Different Grids (II: = I&/p,,,) 

y’/(u,/a)’ x lo4 

(Ax)* I=2 1=3 

0.028 4.8 
0.020 4.6 
0.016 3.8 4.7 
0.010 3.4 4.0 

“double star” configuration [ 161, is shown in Fig. 13 for A = 16 and p = 0.03. This 
configuration is a superposition of a quadrupole field on an I= 3 helical field. In this 
configuration the toroidal shift is strongly reduced as compared with Fig. 12. 

Finally, we used the code to study the stability of straight and toroidal helical 
configurations. Fig. 14 shows an unstable eigenmode of a straight I = 2 and I= 3 
equilibrium, respectively. The mode with azimuthal and axial wave number m = 1 
and k = 0 is modulated by the helicity of the equilibrium. The growth rate of these 
modes y turns out to decrease slightly with decreasing mesh size (Table I). 

We also investigated the growth rate y of an unstable m = 2, k = h/5 flute mode of 
a straight helical 1= 2 equilibrium with NP = 5 periods, wave number ha = 0.68 and 

I=2 straaght,ho=0675. p=O22 
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FIG. 15. Growth rates y  of an m = 2, k = h/5 mode of a straight I= 2, ha = 0.68 helical equilibrium 
as a function of rotational transform per period I as caculated with different grids. The resonance should 
occur at I,,, = 0.1. 
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FIG. 16. The same as Fig. 15 for a toroidal i = 2 equilibrium with I= 0.11 per period and varied 
plasma aspect ratios A = n/(h). n is the number of wavelengths of the disturbance along the torus, 
N, = 5n. 

constant rotational transform I per period. y should be largest if the pitch of the mode 
and of the field lines coincide, i.e., k,,,/(mh) =z,,,. In Fig. 15 I is varied keeping the 
wave number of the mode, k = h/5, fixed. By increasing the number of mesh points 
the resonance curve approaches its correct position and the growth rates increase. 
The extrapolated curve for Ax = 0 was obtained by assuming a (Ax)*-dependence of 
the eigenvalue y* on grid size Ax for Ax --) 0. These eigenvalues have been compared 
with those derived from two 2D helically symmetric codes, a version of the ERATO 
eigenvalue code and a linearized evolutionary code [ 171. The agreement is 
satisfactory. 

If the 1= 2 helix is bent into a torus, keeping the length of the helix and of the 
disturbance fixed, the eigenvalues of the new equilibrium are shifted towards stability 
as compared with the straight case. In a 20* x 100 mesh grid the resonant mode 
appears stable for aspect ratios A (for pressure l/e-width) below 30, and the 
maximum eigenvalue at A = 60 has about half the value of the corresponding straight 
case (A + co) (Fig.‘l6). For smaller grid sizes the aspect ratio for marginal stability 
may be expected to be smaller. 

CONCLUSION 

The 3D Eulerian code described is capable of finding the equilibrium state to a 
given initial distribution of field and pressure and to assess its stability. Grids with 
more than 143 mesh points are necessary if one wants to achieve quantitatively 
correct results. 
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